Wiener Polarity Index of Tensor Product of Graphs
نویسندگان
چکیده مقاله:
Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. In theoretical chemistry, distance-based molecular structure descriptors are used for modeling physical, pharmacologic, biological and other properties of chemical compounds. The Wiener Polarity index of a graph G is denoted by W_P (G) is the number of unordered pairs of vertices of distance 3. The Wiener polarity index is used to demonstrate quantitative structure-property relationships in a series of acyclic and cycle-containing hydrocarbons. Let G,H be two simple connected graphs. Then the tensor product of them is denoted by G⨂H whose vertex set is V(G⨂H)=V(G)×V(H) and edge set is E(G⨂H)={(a,b)(c,d)| ac∈E(G) ,bd∈E(H) }. In this paper, we aim to compute the Wiener polarity index of G⨂H which was computed wrongly in [J. Ma, Y. Shi and J. Yue, The Wiener Polarity Index of Graph Products, Ars Combin., 116 (2014) 235-244].
منابع مشابه
wiener polarity index of tensor product of graphs
mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. in theoretical chemistry, distance-based molecular structure descriptors are used for modeling physical, pharmacologic, biological and other properties of chemical compounds. the wiener polarity index ...
متن کاملfurther results on wiener polarity index of graphs
the wiener polarity index wp(g) of a molecular graph g of order n is the number ofunordered pairs of vertices u, v of g such that the distance d(u,v) between u and v is 3. in anearlier paper, some extremal properties of this graph invariant in the class of catacondensedhexagonal systems and fullerene graphs were investigated. in this paper, some new bounds forthis graph invariant are presented....
متن کاملA Note on Tensor Product of Graphs
Let $G$ and $H$ be graphs. The tensor product $Gotimes H$ of $G$ and $H$ has vertex set $V(Gotimes H)=V(G)times V(H)$ and edge set $E(Gotimes H)={(a,b)(c,d)| acin E(G):: and:: bdin E(H)}$. In this paper, some results on this product are obtained by which it is possible to compute the Wiener and Hyper Wiener indices of $K_n otimes G$.
متن کاملthe hyper edge-wiener index of corona product of graphs
let $g$ be a simple connected graph. the edge-wiener index $w_e(g)$ is the sum of all distances between edges in $g$, whereas the hyper edge-wiener index $ww_e(g)$ is defined as {footnotesize $w{w_e}(g) = {frac{1}{2}}{w_e}(g) + {frac{1}{2}} {w_e^{2}}(g)$}, where {footnotesize $ {w_e^{2}}(g)=sumlimits_{left{ {f,g} right}subseteq e(g)} {d_e^2(f,g)}$}. in this paper, we present explicit formula fo...
متن کاملDistance-based topological indices of tensor product of graphs
Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...
متن کاملThe Generalized Wiener Polarity Index of some Graph Operations
Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 1 شماره 2
صفحات 305- 316
تاریخ انتشار 2016-07-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023